Publikationen Prof. Dr. Wolfgang van Berk

Ausgewählte Veröffentlichungen der ehemaligen ‚Arbeitsgruppe Hydrogeologie‘ von Prof. W. van Berk

zu angewandten hydrogeochemischen Modellierungen für verschiedene Geosystem

       Uran in Grund- und Rohwässern

  •  van Berk, W., Fu, Y., 2017: Redox Roll-Front Mobilization of Geogenic Uranium by Nitrate Input into Aquifers: Risks for Groundwater Resources. Environmental Science & Technology, 51, 337-345. DOI: 10.1021/acs.est.6b01569

       Erdöl-/Erdgas-Reservoir

  •  van Berk, W., Fu, Y., Schulz, H.-M., 2015: Creation of pre-oil-charging porosity by migration of source rock-derived corrosive fluids through carbonate reservoirs: one dimensional reactive mass transport modeling. Petroleum Geoscience, 21, 35-42.
  •  van Berk, W., Y. Fu, and H.-M. Schulz, 2015, Temporal and spatial development of scaling in reservoir aquifers triggered by seawater injection: Three-dimensional reactive mass transport modeling of water–rock–gas interactions. Journal of Petroleum Science and Engineering, 135, 206-217.
  • Fu, Y., W. van Berk, H.-M. Schulz, N. Mu, 2015, Berthierine formation in reservoir rocks from the Siri oilfield (Danish North Sea) as result of fluid–rock interactions: Part II. Deciphering organic–inorganic processes by hydrogeochemical modeling. Marine and Petroleum Geology, 10.1016/j.marpetgeo.2015.01.007
  • Mu, N., H.-M. Schulz, Y. Fu, N. Hemmingsen Schovsbo, R. Wirth, D. Rhede and W. van Berk, 2015, Berthierine formation in reservoir rocks from the Siri oilfield (Danish North Sea) as result of fluid–rock interactions: Part I. Characterization. Marine and Petroleum Geology, 10.1016/j.marpetgeo.2015.04.010
  •  H.-M. Schulz, S. Biermann, W. van Berk, M. Krüger, N. Straaten, A. Bechtel, R. Wirth, V. Lüders, N.H. Schovsbo, S. Crabtree, 2015, From shale oil to biogenic shale gas: Retracing organic–inorganic interactions in the Alum Shale (Furongian–Lower Ordovician) in southern Sweden. American Association of Petroleum Geologists, Bulletin. DOI: 10.1306/10221414014
  • Krüger, M., W. van Berk, E.T. Arning, N. Jiménez, N. H. Schovsbo, N. Straaten, and H.-M. Schulz, 2014. The biogenic methane potential of European gas shale analogues: Results from incubation experiments and thermodynamic modelling. International Journal of Coal Geology, v. 136, p. 59–74.
  • Fu, Y., W. van Berk, and H.-M. Schulz, 2013, Temporal and spatial development of scale formation: one-dimensional hydrogeochemical transport modeling. Journal of Petroleum Science & Engineering, 112,273-283.
  • Fu, Y., W. van Berk, and H.-M. Schulz, 2012, Hydrogeochemical modeling of fluid-rock interactions triggered by seawater injection into oil reservoirs: Case study Miller field (UK North Sea), Applied Geochemistry, 27, 1266-1277.
  • Schulz, H.-M. and W. van Berk, 2009. Bacterial methane in the Atzbach-Schwanenstadt gas field (upper Austrian Molasse Basin), Part II: Retracing gas generation and filling history by mass balancing of organic carbon conversion applying hydrogeochemical modelling. Marine and Petroleum Geology, v. 26 (2009), p. 1180–1189.
  • Schulz, H.-M., W. van Berk, A. Bechtel, U. Struck and E. Faber, 2009. Bacterial methane in the Atzbach-Schwanenstadt gas field (upper Austrian Molasse Basin), Part I: Geology. Marine and Petroleum Geology, v. 26 (2009), p. 1163–1179.

       CO2-Verhalten im Untergrund

  • Fu, Y., W. van Berk, H.-M. Schulz, N. Mu, 2015, Berthierine formation in reservoir rocks from the Siri oilfield (Danish North Sea) as result of fluid–rock interactions: Part III. Determining mineral stability and CO2-sequestering capacity of glauconitic sandstones. Marine and Petroleum Geology, DOI: 10.1016/j.marpetgeo.2015.01.008
  •  van Berk, W., Schulz, H.-M., Fu, Y. (2013): Controls on CO2 fate and behavior in the Gullfaks oilfield (Norway): how hydrogeochemical modeling can help to decipher organic-inorganic interactions. American Association of Petroleum Geologists, Bulletin, 97, 12, p. 2233-2255.
  • van Berk, W., Y. Fu, and J.-M. Ilger, 2012. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars. Journal of Geophysical Research, v. 117, E10008, doi:10.1029/2012JE004173.
  • van Berk, W., and Y. Fu, 2011. Reproducing hydrogeochemical conditions triggering the formation of carbonate and phyllosilicate alteration mineral assemblages on Mars (Nili Fossae region). Journal of Geophysical Research: Planets, v. 116, E10006, doi: 10.1029/2011JE003886.
  • van Berk, W., J.-M. Ilger, Y. Fu, and C. Hansen, 2010. Decreasing CO2 partial pressure triggered Mg–Fe–Ca carbonate formation in ancient Martian crust preserved in the ALH84001 Meteorite. Geofluids, v. 11, p. 6-17.
  • van Berk, W.; Schulz, H.-M.; Fu., Y. (2009): Hydrogeochemical modeling of CO2 equilibria and mass transfer induced by organic-inorganic interactions in siliciclastic petroleum reservoirs. Geofluids. 9, 253-262.

       H2S-Verhalten im Untergrund

  • Fu, Y., W. van Berk and H.-M. Schulz, 2016, Hydrogen sulfide formation, fate and behavior in anhydrite-sealed carbonate gas reservoirs: A three-dimensional reactive mass transport modeling Approach. American Association of Petroleum Geologists, Bulletin, 100, 843-865.

       Frühdiagentisch gebildete biogene Methan-Reservoire

  • Ergebnisse aus einem Forschungsprojekt in Kooperation mit dem GeoForschungsZentrum Potsdam für die Firmen PETROBRAS/Brasilien und TOTAL/Frankreich
  •  E.T. Arning, St. Häußler, W. van Berk, H.-M. Schulz, 2016, PEaCH4 v.2.0: A modeling platform to predict early diagenetic processes in marine sediments with a focus on biogenic methane – case study: Offshore Namibia. Computers and Geosciences; http://dx.doi.org/10.1016/j.cageo.2016.04.004
  •  E.T. Arning, W. van Berk, H.-M. Schulz, (2015), Fate and behaviour of marine organic matter during burial of anoxic sediments: Testing CH2O as generalized input parameter in reaction transport models. Marine Geochemistry, v. 178, p. 8–21.
  •  Arning, E.T., E.C. Gaucher, W. van Berk, and H.-M. Schulz, 2015. Hydrogeochemical models locating sulfate-methane transition zone in marine sediments overlying black shales: A new tool to locate biogenic methane? Marine and Petroleum Geology, v. 59, p. 563–574.
  • Arning, E.T., W. van Berk, E.V.D. Santos Neto, E. Naumann, and H.-M. Schulz, 2013. The quantification of methane formation in Amazon Fan sediments (ODP Leg 155, Site 938) by hydrogeochemical modeling solid – Aqueous solution – Gas interactions. Journal of South American Earth Sciences, v. 42, p. 205–215.
  • Arning, E.T., W. van Berk, and H.-M. Schulz, 2012. Quantitative geochemical modeling along a transect off Peru: Carbon cycling in time and space, and the triggering factors for carbon loss and storage. Global Biogeochemical Cycles, v. 26, GB4012.
  • Arning, E.T., Y. Fu, W. van Berk, and H.-M. Schulz, 2011, Organic carbon remineralisation and complex, early diagenetic solid–aqueous solution–gas interactions: Case study ODP Leg 204, Site 1246 (Hydrate Ridge). Marine Chemistry, v. 126, p. 120–131.

       Geothermische nutzbare Tiefengrundwasser-Reservoire

  • Bozau, E., C.-D. Sattler, and W. van Berk, 2015. Hydrogeochemical classification of deep formation waters. Applied Geochemistry, v. 52, p. 23–30.
  • Bozau, E., S. Häußler, and W. van Berk, 2015. Hydrogeochemical modelling of corrosion effects and barite scaling in deep geothermal wells of the North German Basin using PHREEQC and PHAST. Geothermics, v. 53, p. 540–547.

Die damals durchgeführten numerischen Modellierungen solcher Prozesse

  • basieren immer auf den chemisch-thermodynamischen Gesetzmäßigkeiten von Gleichgewichtsreaktionen zwischen wässrigen Lösungen, Feststoffphasen und Gasen, in die reaktionskinetische Aspekte sowie auch organische Komponenten einbezogen sind

  • verknüpfen diese hydrogeochemischen Prozesse mit der advektiv-dispersiv-diffusiven Verfrachtung durch wässrigen Lösungen und Gase im jeweiligen Geosystem, um räumlich-zeitliche Entwicklungen und Auswirkungen dieser dann ‚reaktiven Stofftransportprozesse‘ abzuschätzen

  • nutzen – wann immer geeignete Beobachtungen und Informationen vorliegen (aus realen Geosystemen bzw. aus Laborversuchen)  – solche Messwerte zur Plausibilitätsprüfung der Modellierungen

  • setzen immer die Rechenprogramme PHREEQC (1D-Berechnungen) und PHAST (2D- bzw. 3D-Berechnungen) ein, die seit mehr als 30 Jahren vom USGS weiterentwickelt werden

  • berechnen die Auswirkungen der hydrogeochemischen Prozesse auf die hydrochemische Zusammensetzung der wässrigen Lösungen, auf die Zusammensetzung und Partialdrucke der Multi-Komponenten Gasphase und auf die mineralisch-geochemische Zusammensetzung der Feststoffgerüste, teilweise unter Errechnung der sich bei den Prozessen verändernden Porosität.